
Theoretical Bounds on Sorting
Lecture 34 (Sorting 4)

1

CS61B, Spring 2024 @ UC Berkeley
Slides credit: Josh Hug

Lecture 34, CS61B, Spring 2024

Goal: How Hard is Sorting?
Math Problem Warmup
Theoretical Bounds on Sorting

• Simple Bounds for TUCS (the
ultimate comparison sort)

• Coin Puzzles
• Puppy Cat Dog
• The Sorting Lower Bound

Sounds of Sorting

Goal: How Hard is
Sorting?

Sorts Summary

Memory # Compares Notes Stable?

Heapsort Θ(1) Θ(N log N) Bad caching (61C) No

Insertion Θ(1) Θ(N2) Best for almost sorted
and N < 15

Yes

Mergesort Θ(N) Θ(N log N) Fastest stable sort Yes

Quicksort LTHS Θ(log N) Θ(N log N) expected Fastest sort No

You can create a stable Quicksort. However, using
unstable partitioning schemes (like Hoare
partitioning) and using randomness to avoid bad
pivots tend to yield better runtimes.

This is due to the cost of
tracking recursive calls by the
computer, and is also an
“expected” amount. The
difference between log N and
constant memory is trivial.

Sorting

Sorting is a foundational problem.
● Obviously useful for putting things in order.
● But can also be used to solve other tasks, sometimes in non-trivial ways.

○ Sorting improves duplicate finding from a naive N2 to N log N.
○ Sorting improves 3SUM from a naive N3 to N2.

● There are many ways to sort an array, each with its own interesting tradeoffs
and algorithmic features.

Today we’ll discuss the fundamental nature of the sorting problem itself: How hard
is it to sort?

Comparison Sorts (Your Answer)

For today, we'll only consider comparison sorts, which sort a list of items using
only two operations:
● compareTo, which compares two items and says which one is greater
● swap, which swaps the indices of two items in the array

This allows our sorting algorithm to work on any Comparable object
Examples of comparison sorts:
Insertion sort, Selection sort, Bubble sort, Mergesort, Quicksort
Examples of non-comparison sorts:
Counting sort, Radix sort,

Comparison Sorts (My Answer)

For today, we'll only consider comparison sorts, which sort a list of items using
only two operations:
● compareTo, which compares two items and says which one is greater
● swap, which swaps the indices of two items in the array

This allows our sorting algorithm to work on any Comparable object
Examples of comparison sorts (ones highlighted in blue haven't been covered yet):
Heapsort, Mergesort, Quicksort, Insertion Sort, Selection Sort, Bubble Sort
Examples of non-comparison sorts: Radix Sort, Sleepsort, Gravity Sort, BOGOsort

Lecture 34, CS61B, Spring 2024

Goal: How Hard is Sorting?
Math Problem Warmup
Theoretical Bounds on Sorting

• Simple Bounds for TUCS (the
ultimate comparison sort)

• Coin Puzzles
• Puppy Cat Dog
• The Sorting Lower Bound

Sounds of Sorting

Math Problem
Warmup

A Math Problem out of Nowhere

Consider the functions N! and (N/2)N/2

Is N! ∈ Ω((N/2)N/2)? Prove your answer.
● Recall that ∈ Ω can be informally be interpreted to mean ≥
● In other words, does factorial grow at least as quickly as (N/2)N/2?

A Math Problem out of Nowhere

Consider the functions N! and (N/2)N/2

Is N! ∈ Ω((N/2)N/2)? Prove your answer.

10!
● 10 * 9 * 8 * 7 * 6 * … * 1

55

● 5 * 5 * 5 * 5 * 5

N! > (N/2)N/2, for large N, therefore N! ∈ Ω((N/2)N/2)

Another Math Problem

Given: N! > (N/2)N/2, which we used to prove our answer to the previous problem.

Show that log(N!) ∈ Ω(N log N).
● Recall: log means an unspecified base.
● Remember your log rules:

○ log(AB) = B * log(A)
○ log(A*B) = log(A) + log(B)
○ logA(B) = log(B)/log(A)

Another Math Problem

Given that N! > (N/2)N/2

Show that log(N!) ∈ Ω(N log N).

We have that N! > (N/2)N/2

● Taking the log of both sides, we have that log(N!) > log((N/2)N/2).
● Bringing down the exponent we have that log(N!) > N/2 log(N/2).
● Using log rules we have that log(N!) > N/2 (log(N) - log(2))
● Discarding the unnecessary constants, we have log(N!) ∈ Ω(N log (N/2)).
● From there, we have that log(N!) ∈ Ω(N log N).

In other words, log(N!) grows at least as quickly as N log N.

Last Math Problem

In the previous problem, we showed that log(N!) ∈ Ω(N log N).

Now show that N log N ∈ Ω(log(N!)).

Last Math Problem

Show that N log N ∈ Ω(log(N!))

Proof:
● log(N!) = log(N) + log(N-1) + log(N-2) + …. + log(1)
● N log N = log(N) + log(N) + log(N) + … log(N)
● Therefore N log N ∈ Ω(log(N!))

Omega and Theta: yellkey.com

Given:
● N log N ∈ Ω(log(N!))
● log(N!) ∈ Ω(N log N)

Which of the following can we say?
A. N log N ∈ Θ(log N!)
B. log N! ∈ Θ(N log N)
C. Both A and B
D. Neither

Omega and Theta

Given:
● N log N ∈ Ω(log(N!))
● log(N!) ∈ Ω(N log N)

Which of the following can we say?
A. N log N ∈ Θ(log N!)
B. log N! ∈ Θ(N log N)
C. Both A and B
D. Neither

Informally: N log N ≥ log(N!)

Informally: N log N = log(N!)

Informally: log(N!) ≥ N log N

Summary

We’ve shown that log(N!) ∈ Θ(N log N).
● In other words, these two functions grow at the same rate asymptotically.

As for why we did this, we will see in a little while...

Lecture 34, CS61B, Spring 2024

Goal: How Hard is Sorting?
Math Problem Warmup
Theoretical Bounds on Sorting

• Simple Bounds for TUCS (the
ultimate comparison sort)

• Coin Puzzles
• Puppy Cat Dog
• The Sorting Lower Bound

Sounds of Sorting

Simple Bounds for
TUCS (the
ultimate
comparison sort)

Sorting

We have shown several sorts to require Θ(N log N) worst case time.
● Can we build a better sorting algorithm?

Let the ultimate comparison sort (TUCS) be the asymptotically fastest possible
comparison sorting algorithm, possibly yet to be discovered, and let R(N) be its
worst case runtime.

Give the best Ω and O bounds you can for R(N).

It might seem strange to give Ω and O bounds for an algorithm whose details are
completely unknown, but you can, I promise!

Sorting

We have shown several sorts to require Θ(N log N) worst case time.
● Can we build a better sorting algorithm?

Let the ultimate comparison sort (TUCS) be the asymptotically fastest possible
comparison sorting algorithm, possibly yet to be discovered, and let R(N) be its
worst case runtime.

● Worst case run-time of TUCS, R(N) is Ω(1).
○ Obvious: Problem doesn’t get easier with N.
○ Can we make a stronger statement than Ω(1)?

O(N log N)

Ω(1)

TUCS Worst
 Case Θ Runtime

● Worst case run-time of TUCS, R(N) is O(N log N).
○ Obvious: Mergesort is Θ(N log N) so R(N) can’t be worse!

Sorting

Let TUCS be the asymptotically fastest possible comparison sorting algorithm,
possibly yet to be discovered.
● Worst case run-time of TUCS, R(N) is O(N log N). Why?
● Worst case run-time of TUCS, R(N) is also Ω(N).

○ Have to at least look at every item.
O(N log N)

Ω(N)

TUCS Worst
 Case Θ Runtime

Sorting

We know that TUCS “lives” between N and N log N.
● Worst case asymptotic runtime of TUCS is between Θ(N) and Θ(N log N).

O(N log N)

Ω(N)

TUCS Worst
 Case Θ Runtime

● Can we make an even stronger statement on the lower bound?
○ With a clever argument, yes (as we’ll see soon see).

■ Spoiler alert: It will turn out to be Ω(N log N)
○ This lower bound means that across the infinite space of all

possible ideas that any human might ever have for sorting
using sequential comparisons, NONE has a worst case runtime
that is better than Θ(N log N).

Lecture 34, CS61B, Spring 2024

Goal: How Hard is Sorting?
Math Problem Warmup
Theoretical Bounds on Sorting

• Simple Bounds for TUCS (the
ultimate comparison sort)

• Coin Puzzles
• Puppy Cat Dog
• The Sorting Lower Bound

Sounds of SortingCoin Puzzles

9 Coins

Suppose we have nine coins that are all identical in appearance and weight.
However, one of them is a counterfeit coin, and weighs slightly more than the
other 8.
We have a scale that can be used to compare two sets of coins at a time, but we
can only use it twice. How can we determine the counterfeit coin?

1 2 3 4 5 6 7 8 9

9 Coins: Step 1

Many solutions, but here's the classic one:
Step 1: Compare coins 123 vs 456
There are three cases:

 1: Left side heavier 2: Right side heavier

 3: The two are equal

1 2 3 4 5 6

7 8 9

9 Coins: Step 2 in Case 1

In case 1: The heavier coin is either 1, 2, or 3
Step 2.1: Compare coins 1 vs 2
There are three possibilities:

 1: Left side heavier 2: Right side heavier
 Coin 1 is counterfeit Coin 2 is counterfeit

 3: The two are equal
 Coin 3 is counterfeit

1 2

3

9 Coins: Step 2 in Case 2

In case 2: The heavier coin is either 4, 5, or 6
Step 2.2: Compare coins 4 vs 5
There are three possibilities:

 1: Left side heavier 2: Right side heavier
 Coin 4 is counterfeit Coin 5 is counterfeit

 3: The two are equal
 Coin 6 is counterfeit

4 5

6

9 Coins: Step 2 in Case 3

In case 3: The heavier coin is either 7, 8, or 9
Step 2.3: Compare coins 7 vs 8
There are three possibilities:

 1: Left side heavier 2: Right side heavier
 Coin 7 is counterfeit Coin 8 is counterfeit

 3: The two are equal
 Coin 9 is counterfeit

7 8

9

9 Coins: Decision Tree

The full decision tree for 9 coins:
123 vs 456?

1 vs 2? 7 vs 8? 4 vs 5?

> = <

1 fake 2 fake3 fake

7 fake 8 fake9 fake

4 fake 5 fake6 fake

9 Coins: Validation

To verify that our scheme works, let's check every single case.
There are nine "universes" that we could start in (1 is counterfeit, 2 is counterfeit,
etc.). We can verify that in each universe, we yield the correct result

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

9 Coins: Decision Tree in Universe 1

The full decision tree in Universe 1:
123 vs 456?

1 vs 2? 7 vs 8? 4 vs 5?

> = <

1 fake 2 fake3 fake

7 fake 8 fake9 fake

4 fake 5 fake6 fake

9 Coins: Validation

To verify that our scheme works, let's check every single case.
There are nine "universes" that we could start in (1 is counterfeit, 2 is counterfeit,
etc.). We can verify that in each universe, we yield the correct result

9 Coins: Validation

To verify that our scheme works, let's check every single case.
There are nine "universes" that we could start in (1 is counterfeit, 2 is counterfeit,
etc.). We can verify that in each universe, we yield the correct result

1 fake 2 fake 3 fake

4 fake 5 fake 6 fake

7 fake 8 fake 9 fake

10 Coins

With 9 coins, we can find the counterfeit coin in 2 weighings.
Question: Can we do this with 10 coins?

1 2 3 4 5 6 7 8 9 10

10 Coins: Proof of impossibility

No: With a two-layer decision tree, we have at most 9 leaves, but there are 10
possible universes.

> = <

10 Coins: Proof of impossibility

Therefore, at least one leaf must have two universes that lead there

> = <

10 Coins: Proof of impossibility

In that leaf, regardless of the two universes that end up there, we'll be wrong in at
least one of those universes.
Therefore it is impossible to guarantee a determination on which of 10 coins is
counterfeit with only 2 weighings.

6 Fake
1 2 3 4 5

6 7 8 9 10

1 2 3 4 5

6 7 8 9 10

More Coins

Each weighing triples the number of cases we can manage. So with N weighings,
we can have at most 3N leaves in our decision tree. This means that if we have >3N
coins, we have proven that no algorithm exists.
Does the converse hold true?

If we have X <= 3N coins, does our proof guarantee an algorithm exist?
In this case, we can find an algorithm for X coins as long as the condition holds,
but this isn't necessarily true (see skipped slides for a counterexample).

1 2 3 4 5 6 … … … X

12/13 Coins: yellkey.com

This time, the counterfeit coin can either be slightly lighter, or slightly heavier than all the
other coins. We want to know both which coin is counterfeit, and whether it was heavier, or
lighter. This time, we can use the scale 3 times, so in theory, we can handle 27 universes.
Which of the following are possible?
A. 12 coins (24 universes)
B. 12 coins if we have a 13th reference coin that is guaranteed to be real
C. 12 coins if we don't care about whether the counterfeit is heavier or lighter
D. 13 coins (26 universes)
E. 13 coins if we have a 14th reference coin that is guaranteed to be real
F. 13 coins if we don't care about whether the counterfeit is heavier or lighter

1 2 3 4 5 6 7

8 9 A B C D R

12 Coins: Solution

For 12 coins, this is possible (and by extension the other 12-coin puzzles)

1234 vs 5678

125 vs 346 9A vs 1B 156 vs 278

1 vs 2 1 vs 7 3 vs 4 9 vs A 1 vs C 9 vs A 7 vs 8 1 vs 3 5 vs 6

13 Coins: Proof of Impossibility

For 13 coins, this is impossible. We do have 26 < 27 universes, but we also need
our first weighing to narrow down to 9 or fewer universes. Our first weighing needs
to compare an equal number of coins, so we can check all possible weighings to
show that no first weighing splits our 27 universes into groups 9 or smaller (the
below is the closest we get)

1234 vs 5678

8 universes 10 universes 8 universes

13 Coins with a Reference

For 13 coins with a reference, this is possible, because the reference lets us split
into 9-8-9 universes.

12345 vs 6789R

126 vs 347 Same as 12
coin 126 vs 347

1 vs 2 8 vs 9 3 vs 4 3 vs 4 8 vs 9 1 vs 2

13 Coins with only Identification

For 13 coins when we only care about identifying the counterfeit, it's possible
using the solution we found for 12 coins. If we follow the decision tree, we find
that two universes do end up at the same leaf.
But because they both have the same return value, our algorithm still works.

Universe where D is heavy Universe where D is light

D Fake
1 2 3 4 5

6 7 8 9 A

1 2 3 4 5

6 7 8 9 A

B C D B C D

12/13 Coins

Universe counting is a useful tool to find lower bounds of algorithms, but it has some
caveats:
● You can't show that a solution does exist; only that a solution doesn't exist
● If multiple universes yield the same result, they only count as 1 universe

A. 12 coins (24 universes)
B. 12 coins if we have a 13th reference coin that is guaranteed to be real
C. 12 coins if we don't care about whether the counterfeit is heavier or lighter
D. 13 coins (26 universes)
E. 13 coins if we have a 14th reference coin that is guaranteed to be real
F. 13 coins if we don't care about whether the counterfeit is heavier or lighter

1 2 3 4 5 6 7

8 9 10 11 12 13 R

Universe Counting

In general, any decision tree with K layers and a branching factor of R (3 in this case) has at
most RK leaves, so it can handle a problem with up to RK universes (where each universe
yields a different expected return value).
If we flip this around, that means that if we have a problem that has RK universes, the
decision tree must have at least K layers
● Or if we have a problem with K universes, the decision tree must have Ω(log K) layers

Lecture 34, CS61B, Spring 2024

Goal: How Hard is Sorting?
Math Problem Warmup
Theoretical Bounds on Sorting

• Simple Bounds for TUCS (the
ultimate comparison sort)

• Coin Puzzles
• Puppy Cat Dog
• The Sorting Lower Bound

Sounds of SortingPuppy, Cat, Dog

The Game of Puppy, Cat, Dog

Suppose we have a puppy, a cat, and a dog, each in an opaque soundproof box
labeled A, B, and C. The puppy is lighter than the cat, and the cat is lighter than the
dog. As before, we have a scale, and we want to minimize the number of times we
use the scale (unlike before, we never get equality on this scale, because all the
animals are different weights). Our goal is to write A, B, C in order of weight.

The Game of Puppy, Cat, Dog, yellkey.com

What is our minimum decision tree height for the game of Puppy, Cat, Dog
(according to our universe bound)?
A. 3
B. 4
C. 5
D. 6

The Game of Puppy, Cat, Dog

What is our minimum decision tree height for the game of Puppy, Cat, Dog
(according to our universe bound)?
A. 3
B. 4
C. 5
D. 6

Proof:
● If N=3, we have 3! = 6 different permutations of the animals, and each

permutation yields a different answer. Therefore we have 6 universes
● So we need a binary tree with at least 6 leaves.

○ How many levels minimum? 22 = 4 is too small, and 23=8 is large enough,
so we need at least 3 layers.

Puppy, Cat, Dog - Decision Tree

The full decision tree for puppy, cat, dog:

Is a < b?

Is b < c?

No Yes

YesNo

Is a < c?

a c b

Yes

c a b

No

Is a < c?

Is b < c? b a c

b c ac b a

YesNo

No Yes

a b c
a: puppy
b: cat
c: dog

a: puppy
c: cat
b: dog

c: puppy
a: cat
b: dog

Generalizing Puppy, Cat, Dog

How many questions would you need to ask to definitely solve the generalized
“puppy, cat, dog” problem for N items?
● Give your answer in big Omega notation.

Generalizing Puppy, Cat, Dog

How many questions would you need to ask to definitely solve the generalized
“puppy, cat, dog” problem for N items?
● Give your answer in big Omega notation.

For N, we have the following argument:
● For N animals, we have N! universes.
● So we need at least ceiling(lg(N!)) levels, which is Ω(log(N!))

○ Don't know for certain that we can attain that bound, so we can only say
an Omega bound

○ lg just means log2 (log base 2)

Answer: Ω(log(N!))

Generalizing Puppy, Cat, Dog

Finding an optimal decision tree for the generalized version of puppy, cat, dog (e.g.
N=6: puppy, cat, dog, monkey, walrus, elephant) is an open problem in
mathematics.
● (To my knowledge) Best known trees known for N=1 through 15 and N=22:

○ For more, see: http://oeis.org/A036604

Deriving a sequence of yes/no questions to identify puppy, cat, dog is hard. An
alternate approach to solving the puppy, cat, dog problem:
● Use a sorting algorithm!

http://oeis.org/A036604

Reducing Puppy, Cat, Dog to Sorting

Arrange the boxes in a row from A to Z
Create a class Box implements Comparable
For the compareTo method:
● Use the scale to compare the given boxes and return the result

For the swap method:
● Swap the two boxes

Sort the array. This reorders the boxes from lightest to heaviest.
Read out the letters on the boxes from lightest to heaviest

Sorting, Coins, Puppies, Cats, and Dogs

Why do we care about these coins and (no doubt adorable) critters?

A solution to the sorting problem also provides a solution to puppy, cat, dog.
● In other words, puppy, cat, dog reduces to sorting.
● Thus, any lower bound on difficulty of puppy, cat, dog must ALSO apply to

sorting.

Physics analogy: Climbing a hill with your legs (CAHWYL) is one way to solve the
problem of getting up a hill (GUAH).
● Any lower bound on energy to GUAH must also apply to CAHWYL.
● Example bound: Takes m*g*h energy to climb hill, so using legs to climb the

hill takes at least m*g*h energy.

Lecture 34, CS61B, Spring 2024

Goal: How Hard is Sorting?
Math Problem Warmup
Theoretical Bounds on Sorting

• Simple Bounds for TUCS (the
ultimate comparison sort)

• Coin Puzzles
• Puppy Cat Dog
• The Sorting Lower Bound

Sounds of Sorting

The Sorting Lower
Bound

Sorting Lower Bound

We have a lower bound on puppy, cat, dog: namely that it takes Ω(log(N!))
comparisons to solve such a puzzle in the worst case.

Since sorting with comparisons can be used to solve puppy, cat, dog, then sorting
also takes Ω(log(N!)) comparisons in the worst case.

Or in other words:
● Any sorting algorithm using comparisons, no matter how clever,

must use at least k = lg(N!) compares to find the correct
permutation. So even TUCS takes at least lg(N!) comparisons.

● lg(N!) is trivially Ω(log(N!)), so TUCS must take Ω(log(N!)) time.
● So, how does log(N!) compare to N log N?

O(N log N)

Ω(log(N!))

TUCS Worst
 Case Θ Runtime

Another Math Problem

Earlier, we showed that log(N!) ∈ Ω(N log N) using the proof below.
● In other words, log(N!) grows at least as quickly as N log N.

Proof from earlier that log(N!) ∈ Ω(N log N):
● We know that N! ≥ (N/2)N/2.
● Taking the log of both sides, we have that log(N!) ≥ log((N/2)N/2).
● Bringing down the exponent we have that log(N!) ≥ N/2 log(N/2).
● Discarding unnecessary constants, we have log(N!) ∈ Ω(N log N)

Recall that changing
base is just multiplying
by a constant.

The Sorting Lower Bound (Finally)

Since TUCS is Ω(lg N!) and lg N! is Ω(N log N), we have that TUCS is Ω(N log N).

Any comparison based sort requires at least order N log N comparisons in its
worst case.

O(N log N)

Ω(N log N)

TUCS Worst
 Case Θ Runtime

The Sorting Lower Bound (Finally)

Since TUCS is Ω(lg N!) and lg N! is Ω(N log N), we have that TUCS is Ω(N log N).

Any comparison based sort requires at least order N log N comparisons in its
worst case.

Proof summary:
● Puppy, cat, dog is Ω(lg N!), i.e. requires lg N! comparisons.
● TUCS can solve puppy, cat, dog, and thus takes Ω(lg N!) compares.
● lg(N!) is Ω(N log N)

○ This was because N! is Ω(N/2)N/2

Informally: TUCS ≥ puppy, cat, dog ≥ log N! ≥ N log N

O(N log N)

Ω(N log N)

TUCS Worst
 Case Θ Runtime

Optimality

The punchline:
● Our best sorts have achieved absolute asymptotic optimality.

○ Mathematically impossible to sort using fewer comparisons.
○ Note: Randomized quicksort is only probabilistically optimal, but the

probability is extremely high for even modest N. Are you worried about
quantum teleportation? Then don’t worry about Quicksort.

Memory # Compares Notes Stable?

Heapsort Θ(1) Θ(N log N) Bad caching (61C) No

Insertion Θ(1) Θ(N2) Best for almost
sorted and N < 15

Yes

Mergesort Θ(N) Θ(N log N) Fastest stable sort Yes

Quicksort LTHS Θ(log N) Θ(N log N) expected Fastest sort No

Next Time...

Today we proved that any sort that uses comparisons has runtime Ω(N log N).

Next time we’ll discuss how we can sort in Θ(N) time.
● Not impossible, just can’t be a comparison sort!

Lecture 34, CS61B, Spring 2024

Goal: How Hard is Sorting?
Math Problem Warmup
Theoretical Bounds on Sorting

• Simple Bounds for TUCS (the
ultimate comparison sort)

• Coin Puzzles
• Puppy Cat Dog
• The Sorting Lower Bound

Sounds of SortingSounds of Sorting

Sounds of Sorting Algorithms (of 125 items)

Starts with selection sort: https://www.youtube.com/watch?v=kPRA0W1kECg
Insertion sort: https://www.youtube.com/watch?v=kPRA0W1kECg&t=0m9s
Quicksort: https://www.youtube.com/watch?v=kPRA0W1kECg&t=0m38s
Mergesort: https://www.youtube.com/watch?v=kPRA0W1kECg&t=1m05s
Heapsort: https://www.youtube.com/watch?v=kPRA0W1kECg&t=1m28s
LSD sort: https://www.youtube.com/watch?v=kPRA0W1kECg&t=1m54s [coming in a future lecture]
MSD sort: https://www.youtube.com/watch?v=kPRA0W1kECg&t=2m10s [coming in a future lecture]
Shell’s sort: https://www.youtube.com/watch?v=kPRA0W1kECg&t=3m37s [bonus from an earlier lecture]
One Hour of various sorts: https://www.youtube.com/watch?v=8MsTNqK3o_w
Questions to ponder (later… after class):

● How many items for selection sort?
● Why does insertion sort take longer / more compares than selection sort?
● At what time stamp does the first partition complete for Quicksort?
● Could the size of the input to mergesort be a power of 2?
● What do the colors mean for heapsort?
● How many characters are in the alphabet used for the LSD sort problem? (after we learn about it)
● How many digits are in the keys used for the LSD sort problem? (after we learn about it)

https://www.youtube.com/watch?v=kPRA0W1kECg
https://www.youtube.com/watch?v=kPRA0W1kECg&t=0m9s
https://www.youtube.com/watch?v=kPRA0W1kECg&t=0m38s
https://www.youtube.com/watch?v=kPRA0W1kECg&t=1m05s
https://www.youtube.com/watch?v=kPRA0W1kECg&t=1m28s
https://www.youtube.com/watch?v=kPRA0W1kECg&t=1m54s
https://www.youtube.com/watch?v=kPRA0W1kECg&t=2m10s
https://www.youtube.com/watch?v=kPRA0W1kECg&t=3m37s
https://www.youtube.com/watch?v=8MsTNqK3o_w

Lecture 34, CS61B, Spring 2024

Goal: How Hard is Sorting?
Math Problem Warmup
Theoretical Bounds on Sorting

• Simple Bounds for TUCS (the
ultimate comparison sort)

• Puppy Cat Dog (N = 3, N = 4)
• Puppy Cat Dog for Any N
• The Sorting Lower Bound

Sounds of Sorting

Extra: Sorting
Implementations

A Note on Implementations

Concrete implementations are nice for solidifying understanding.
● Implementing these yourself provides much deeper understanding than just

reading my code.
● You are not responsible for the details of these specific implementations.
● Given enough time, you should be able to implement any of these sorts.

Utility Methods For Sorting

Selection Sort

Key ideas: Among unfixed items, find minimum in Θ(N) time and swap to the
front. Subproblem has size N-1. Total runtime is N + N-1 + … + 1 = Θ(N2).

Insertion Sort

Key ideas: For each item (starting at leftmost), swap leftwards until in place. For
item k, takes Θ(k) worst case time. Runtime is 1 + 2 + … + N = Θ(N2).

Selection and Insertion Sort Runtimes (Code Analysis)

Selection sort: Runtime is independent of input, always Θ(N2).
● ~N2/2 compares and ~N2/2 exchanges. Θ(N2) runtime.

Insertion sort: Runtime is strongly dependent on input. Ω(N), O(N2)
● Best case (sorted): ~N compares, 0 exchanges: Θ(N)
● Worst case (reverse sorted): ~N2/2 compares, ~N2/2 exchanges: Θ(N2)

Mergesort (Merge Method)

Mergesort

Key ideas: Each merge costs Θ(N) time and Θ(N) space, and generates two
subproblems of size N/2. At level L of the sort, there are 2L subproblems of size
N/2L. Since L = Θ(log N), runtime is Θ(N log N).

Interview Question

How can the above mergesort implementation be improved?
● Try and avoid making copies a and b, by adding parameters to the merge

routine. merge(input, 0, 5, 6, 10);
● Use a diferent for small N: Like maybe insertion sort. Industrial strength

mergesorts, use insertion sort for N < 15.

Interview Question

How can the above mergesort implementation be improved?

Heapsort With Separate PQ

Key ideas: Create a max heap of all items [Θ(N log N)], then delete max N times [Θ
(log N) per delete]. Requires Θ(N) space.

In-Place Heapsort (with root in position 0).

Key ideas: Max-Heapfiy [Θ(N)], then delete max N times [Θ(log N) per delete]

In-Place Heapsort Sink Operation (with root in position 0).

